Saturday, September 13, 2008

Phamacy info. and stuffs

General Pharma. Info.

The science and art concerned with the preparation and standardization of drugs. Its scope includes the cultivation of plants that are used as drugs, the synthesis of chemical compounds of medicinal value, and the analysis of medicinal agents. Pharmacists are responsible for the preparation of the dosage forms of drugs, such as tablets, capsules, and sterile solutions for injection. They compound physicians', dentists', and veterinarians' prescriptions for drugs. The science that embraces knowledge of drugs with special reference to the mechanism of their action in the treatment of disease is pharmacology.

History of pharmacy

The beginnings of pharmacy are ancient. When the first person expressed juice from a succulent leaf to apply to a wound, this art was being practiced. In the Greek legend, Asclepius, the god of the healing art, delegated to Hygieia the duty of compounding his remedies. She was his apothecary or pharmacist. The physician-priests of Egypt were divided into two classes: those who visited the sick and those who remained in the temple and prepared remedies for the patients.

In ancient Greece and Rome and during the Middle Ages in Europe, the art of healing recognized a separation between the duties of the physician and those of the herbalist, who supplied the physician with the raw materials from which to make medicines. The Arabian influence in Europe during the 8th century AD, however, brought about the practice of separate duties for the pharmacist and physician. The trend toward specialization was later reinforced by a law enacted by the city council of Bruges in 1683, forbidding physicians to prepare medications for their patients. In America, Benjamin Franklin took a pivotal step in keeping the two professions separate when he appointed an apothecary to the Pennsylvania Hospital.

The development of the pharmaceutical industry since World War II led to the discovery and use of new and effective drug substances. It also changed the role of the pharmacist. The scope for extemporaneous compounding of medicines was much diminished and with it the need for the manipulative skills that were previously applied by the pharmacist to the preparation of bougies, cachets, pills, plasters, and potions. The pharmacist continues, however, to fulfill the prescriber's intentions by providing advice and information; by formulating, storing, and providing correct dosage forms; and by assuring the efficacy and quality of the dispensed or supplied medicinal product.

The practice of pharmacy

Education

The history of pharmaceutical education has closely followed that of medical education. As the training of the physician underwent changes from the apprenticeship system to formal educational courses, so did the training of the pharmacist. The first college of pharmacy was founded in the United States in 1821 and is now known as the Philadelphia College of Pharmacy and Science. Other institutes and colleges were established soon after in the United States, Great Britain, and continental Europe. Colleges of pharmacy as independent organizations or as schools of universities now operate in most developed countries of the world.

The course of instruction leading to a bachelor of science in pharmacy extends at least five years. The first and frequently the second year of training, embracing general education subjects, are often provided by a school of arts and sciences. Many institutions also offer graduate courses in pharmacy and cognate sciences leading to the degrees of master of science and doctor of philosophy in pharmacy, pharmacology, or related disciplines. These advanced courses are intended especially for those who are preparing for careers in research, manufacturing, or teaching in the field of pharmacy.

Since the treatment of the sick with drugs encompasses a wide field of knowledge in the biological and physical sciences, an understanding of these sciences is necessary for adequate pharmaceutical training. The basic five-year curriculum in the colleges of pharmacy of the United States, for example, embraces physics, chemistry, biology, bacteriology, physiology, pharmacology, and many other specialized courses. As the pharmacist is engaged in a business as well as a profession, special training is provided in merchandising, accounting, computer techniques, and pharmaceutical jurisprudence.

Licensing and regulation

To practice pharmacy in those countries in which a license is required, an applicant must be qualified by graduation from a recognized college of pharmacy, meet specific requirements for experience, and pass an examination conducted by a board of pharmacy appointed by the government.

Pharmacy laws generally include the regulations for the practice of pharmacy, the sale of poisons, the dispensing of narcotics, and the labeling and sale of dangerous drugs. The pharmacist sells and dispenses drugs within the provisions of the food and drug laws of the country in which he practices. These laws recognize the national pharmacopoeia (which defines products used in medicine, their purity, dosages, and other pertinent data) as the standard for drugs. The World Health Organization of the United Nations began publishing the Pharmacopoeia Internationalis in the early 1950s. Its purpose is to standardize drugs internationally and to supply standards, strengths, and nomenclature for those countries that have no national pharmacopoeia.

Research

Pharmaceutical research, in schools of pharmacy and in the laboratories of the pharmaceutical manufacturing houses, embraces the organic chemical synthesis of new chemical agents for use as drugs and is also concerned with the isolation and purification of plant constituents that might be useful as drugs. Research in pharmacy also includes formulation of dosage forms of medicaments and study of their stability, methods of assay, and standardization.

Another facet of pharmaceutical research that has attracted wide medical attention is the “availability” to the body (bioavailability) of various dosage forms of drugs. Exact methods of determining levels of drugs in blood and organs have revealed that slight changes in the mode of manufacture or the incorporation of a small amount of inert ingredient in a tablet may diminish or completely prevent its absorption from the gastrointestinal tract, thus nullifying the action of the drug. Ingenious methods have been devised to test the bioavailability of dosage forms. Although such in vitro, or test-tube, methods are useful and indicative, the ultimate test of bioavailability is the patient's response to the dosage form of the drug.

Licensing systems for new medicinal products in Europe and North America demand extensive and increasingly costly investigation and testing in the laboratory and in clinical trials to establish the efficacy and safety of new products in relation to the claims to be made for their use. Proprietary rights for innovation by the grant of patents and by the registration of trademarks have become increasingly important in the growth of the pharmaceutical industry and its development internationally.

3 comments:

Nirupama said...

great post! It’s something I have never thought about, really, but it makes a whole lot of sense. Thanks for sharing
FIN 370 Entire Course

Unknown said...

Thanks for discussing this outstanding material, I really experienced the insign you carry to the subject, awesome stuff
MKT 421 Week 4 Individual Assignment

Arpitha Singh said...

Thanks a lot for a bunch of good tips. I look forward to reading more on the topic in the future. Keep up the good work! This blog is going to be great resource. Love reading it
ACC 291 Week 5